On Various Moduli of Smoothness and K-Functionals

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalence of K-functionals and modulus of smoothness for fourier transform

In Hilbert space L2(Rn), we prove the equivalence between the mod-ulus of smoothness and the K-functionals constructed by the Sobolev space cor-responding to the Fourier transform. For this purpose, Using a spherical meanoperator.

متن کامل

Weighted moduli of smoothness of k-monotone functions and applications

Let ωk φ( f, δ)w,Lq be the Ditzian–Totik modulus with weight w, M k be the cone of k-monotone functions on (−1, 1), i.e., those functions whose kth divided differences are nonnegative for all selections of k + 1 distinct points in (−1, 1), and denote E(X, Pn)w,q := sup f ∈X infP∈Pn ∥w( f − P)∥Lq , where Pn is the set of algebraic polynomials of degree at most n. Additionally, let wα,β (x) := (1...

متن کامل

New Moduli of Smoothness

We discuss various properties of the new modulus of smoothness ω k,r (f, t)p := sup 0<h6t ‖W kh(·)∆khφ(·)(f , ·)‖Lp [−1,1], where φ(x) := √ 1− x2 and Wδ(x) = ( (1−x−δφ(x)/2)(1+x−δφ(x)/2) )1/2 . Related moduli with more general weights are also considered.

متن کامل

equivalence of k-functionals and modulus of smoothness for fourier transform

in hilbert space l2(rn), we prove the equivalence between the mod-ulus of smoothness and the k-functionals constructed by the sobolev space cor-responding to the fourier transform. for this purpose, using a spherical meanoperator.

متن کامل

On Moduli of Smoothness of Fractional Order

In this paper we consider the properties of moduli of smoothness of fractional order. The main result of the paper describes the equivalence of the modulus of smoothness and a function from some class.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ukrainian Mathematical Journal

سال: 2020

ISSN: 0041-5995,1573-9376

DOI: 10.1007/s11253-020-01848-0